Stata codes for the DHS analysis: overview and example
This method brief describes how the Results Tables based on Demographic and Health Survey (DHS) data and published in the 2023 Disability Data Report were constructed.
Six groups of STATA do-files were used to generate the regional-level results based on data collected by the DHS program. The analysis described below may be adapted to compute disability-disaggregated indicators using other sources of data on disability and socioeconomic status (e.g., future DHS rounds, census data, etc.).
- Survey Data Cleaning and Survey Data Appending
- P1 Prevalence
- P2 Prevalence by domain
- P3 Prevalence by household level
- Indicators disaggregated by functional domain
- Indicators disaggregated by functional difficulty status
Below is a description of each group of do files. Only 1a is available below. Other codes are available upon request.
- Survey Data Cleaning and Survey Data Appending. This group of STATA do-files clean and compile the final individual level and household-level datasets used to generate the regional-level results. Specifically, the do-files produce two datasets: (i) an individual-level dataset called “DHS_Cross_Country_Data.dta“ and (ii) a household level dataset called “DHS_Cross_Country_HH_Data.dta.“ These datasets contain information on socio-demographic characteristics for persons and households with and without disabilities. In general, the do-files extract, clean, and code data from two different dta files published by the DHS: a household member data file, and a household-level data file. A similar procedure may be adapted when analyzing other sources of data on disability and socioeconomic status. The steps for running to do-files are outlined below.
a. Clean HH_member data: For each country, this do-file cleans and codes the data on functional difficulties. The file also generates relevant variables for the analysis (e.g., gender, age, urban/rural residence, education, etc.).
b. Append HH member data: This do-file appends all household-member data from each country.
c. Append Household Data and compute multidimensional poverty headcounts: This do-file appends all household data from each country. Then, the do-file merges the cleaned individual-level data with the household data. Lastly, it computes multidimensional poverty headcounts for all individuals. Note: Given often small DHS regional sample sizes for the work indicator, we do not use work in the calculation of multidimensional poverty for the DHS countries in the 2023 Disability Data Report.
Lastly, we exclude individuals with missing data on:
- At least one of the six functional difficulty domains (i.e., seeing, hearing, mobility, communication, cognition, or self-care); or
- Any of the key disaggregation variables (gender, age, urban/rural residence).
The final individual level dataset is saved as “DHS_Cross_Country_Data.dta” and the final household-level dataset is saved as “DHS_Cross_Country_HH_Data.dta.”
2) P1 Prevalence
This group of STATA do-files pulls data from the final individual level dataset (“DHS_Cross_Country_Data.dta”) and exports it to Excel sheet “P1_Prevalence” in the country report. Specifically, it generates the regional, individual-level prevalence tables (Tables P1.1 – P1.7).
a. P1 Global Table Names – Individual Prev: This do-file should be run prior to running the do-files for each sub-group below. It saves the names for the individual prevalence tables.
b. P1 Prevalence – Entire Sample
c. P1 Prevalence – Females
d. P1 Prevalence – Males
e. P1 Prevalence – Rural
f. P1 Prevalence – Urban
g. P1 Prevalence – Ages 15 – 44
h. P1 Prevalence – Ages 45 plus
3) P2 Prevalence by domain
This group of STATA do-files pulls data from the final individual level dataset (“DHS_Cross_Country_Data.dta“) and exports it to Excel sheet “P2_Prevalence_by_type” in the country report. Specifically, it generates the regional prevalence tables by domain (Tables P2.1 – P2.3).
a. P2 Global Tables Names – Prev by Domain: This do-file should be run prior to running the do-files for each level of functional difficulty below. It saves the names for the prevalence by type tables.
b. P1 Prevalence – P2 Prev by Domain – any
c. P1 Prevalence – P2 Prev by Domain – some
d. P1 Prevalence – P2 Prev by Domain – at least
4) P3 Prevalence at the household (HH) level
This group of STATA do-files pulls data from the final household level dataset (“DHS_Cross_Country_HH_Data“) and exports it to Excel sheet “P3_Prevalence_household_level” in the country report. Specifically, it generates the regional-level, household prevalence tables (Tables P3.1 – P3.3).
i. P3 Global Table Names – HH Prev: This do-file should be run prior to running the do-files below. It saves the names for the household prevalence tables.
j. P3 HH-Level Prevalence: Produces household-level prevalence rates for all households
k. P3 Rural HH-Level Prevalence: Produces household-level prevalence rates for rural households
l. P3 Urban HH-Level Prevalence: Produces household-level prevalence rates for urban households
5) Indicators disaggregated by functional domain
This group of STATA do-files pulls data from the final individual level dataset (“DHS_Cross_Country_Data.dta“) and exports it to Excel sheet “Indicators_by_type” in the country report. Specifically, it generates the regional -level indicators by functional difficulty type (Tables E1 – E4; H1 – H2; S1 – S5; M1).
a. Global Table Names – Indicators by Domain: This do-file should be run prior to running the do-files below. It saves the names for the indicators by type tables.
b. Indicators by type: Indicators may be added to the loop.
6) Indicators disaggregated by functional difficulty status
This group of do-files pulls data from the individual level dataset (“DHS_Cross_Country_Data.dta“), computes the disability-disaggregated indicators, and exports the results to a different Excel sheet for each indicator (e.g., sheets: E1_Ever_attended_school, E2_Less_Than_Primary, etc…). Specifically, it generates disability-disaggregated indicators for 3 disaggregation types. Disaggregation (a) is none vs. any difficulty. Disaggregation (b) is no vs some vs at least a lot of difficulty. Disaggregation (c) is no or some vs. at least a lot of difficulty.
a. Global Table Names – Indicators: This do-file should be run prior to running the do-file below. It saves the table names for the disability-disaggregated indicators.
b. DDR 2023 Indicator Tables: Indicators may be added to the loop.
*1a. Clean HH_member data
********************************************************************************
*Globals
********************************************************************************
clear
clear matrix
clear mata
set maxvar 30000
global survey_data \\apporto.com\dfs\FORDHAM\Users\ktheiss_fordham\Documents\DDI 2023 Report\DHS_country_data
global clean_data \\apporto.com\dfs\FORDHAM\Users\ktheiss_fordham\Documents\DDI 2023 Report\DHS_country_data\_Clean Data
global combined_data \\apporto.com\dfs\FORDHAM\Users\ktheiss_fordham\Documents\DDI 2023 Report\DHS_country_data\_Combined Data
********************************************************************************
*Household Member: Create Indicators and Clean data
*Household Member DHS survey has information on disability status
********************************************************************************
global PK_SR 2017_2018
global ML_SR 2018
global MV_SR 2009
global HT_SR 2016_2017
global KH_SR 2014
global SN_SR 2018
global ZA_SR 2016
global RW_SR 2019_2020
global NG_SR 2018
global MR_SR 2019_2021
global TL_SR 2016
global UG_SR 2016
local country_list PK ML HT KH SN ZA RW NG MR TL UG MV
foreach country of local country_list {
use “${survey_data}\\`country’_${`country’_SR}\\`country’_Household Member.dta”, clear
********************************************************************************
*Clean geographic and socio-demographic data
********************************************************************************
*Create country name
gen country_name=”Pakistan” if hv000==”PK7″
replace country_name=”Mali” if hv000==”ML7″
replace country_name=”Haiti” if hv000==”HT7″
replace country_name=”Cambodia” if hv000==”KH6″
replace country_name=”Senegal” if hv000==”SN7″
replace country_name=”South Africa” if hv000==”ZA7″
replace country_name=”Rwanda” if hv000==”RW7″
replace country_name=”Nigeria” if hv000==”NG7″
replace country_name=”Timor-Leste” if hv000==”TL7″
replace country_name=”Uganda” if hv000==”UG7″
replace country_name=”Maldives” if hv000==”MV7″
replace country_name=”Mauritania” if hv000==”MR7″
lab var country_name “Country Name”
*Generate region name
decode hv024, gen(region_name)
lab var region_name “Region Name”
decode hv022, gen(sample_strata)
if hv000 == “SN7” {
decode shzone, gen(region_SN)
replace region_name=region_SN
}
rename hv104 sex_new
lab var sex_new “sex 1 for male sex 2 for female”
gen female = 1 if sex_new==2
replace female = 0 if sex_new==1
lab var female “1 for female 0 for male”
*Rename demographic variables and clean missing values
rename hv105 age
recode age (98=.)
drop if age<15
*Age group
gen age_group_label= “15-29” if age>14&age<30
replace age_group_label= “30-44” if age>29&age<45
replace age_group_label= “45-64” if age>44&age<65
replace age_group_label= “65+” if age>64|age==95
lab var age_group_label “age group range”
gen age_group= 1 if age>14&age<30
replace age_group= 2 if age>29&age<45
replace age_group= 3 if age>44&age<65
replace age_group= 4 if age>64|age==95
lab var age_group “age group range number”
gen urban_new = 1 if hv025==1
replace urban_new =0 if hv025==2
lab var urban_new “1 for urban 0 for rural”
rename hv115 marital_status
rename hv101 relationship_to_head
rename hv219 hoh_gender
rename hv220 hoh_age
*Rename education variables and clean missing values
rename hv106 highest_educ_level
recode highest_educ_level (8 98=.)
rename hv107 higehst_educ_yr
recode higehst_educ_yr (98=.)
rename hv108 educ_yrs
recode educ_yrs (98=.)
rename hv109 educ_attainment
recode educ_attainment (8 98=.)
*Education – completed less than primary school
gen ind_less_primary=0 if educ_attainment==2|educ_attainment==3|educ_attainment==4|educ_attainment==5
replace ind_less_primary=1 if educ_attainment==0|educ_attainment==1
replace ind_less_primary=. if educ_attainment==8|educ_attainment==.
lab var ind_less_primary “E2_Less_than_primary binary”
*Education – completed primary school
gen ind_primary=1 if educ_attainment==2|educ_attainment==3
replace ind_primary=0 if educ_attainment==0|educ_attainment==1|educ_attainment==4|educ_attainment==5
replace ind_primary=. if educ_attainment==8|educ_attainment==.
lab var ind_primary “E3_Primary binary”
*Education – completed at least secondary school
gen ind_atleastsecondary=1 if educ_attainment==4|educ_attainment==5
replace ind_atleastsecondary=0 if educ_attainment==0|educ_attainment==1|educ_attainment==2|educ_attainment==3
replace ind_atleastsecondary=. if educ_attainment==8|educ_attainment==.
lab var ind_atleastsecondary “E4_At_least_secondary binary”
*Ever attended school
gen everattended_new =1 if educ_yrs>0
replace everattended_new =0 if educ_yrs==0
replace everattended_new =. if educ_yrs==98
lab var everattended_new “E1_Ever_attended_school binary”
gen edattain_new=educ_attainment
recode edattain_new (0 1 =1) (2 3 =2) (4 =3) (5= 4)
lab var edattain_new “1 Less than Prim 2 Prim 3 Sec 4 Higher”
gen v001 = hv001
gen v002 = hv002
gen v003 = hvidx
sort v001 v002 v003
label var v001 “cluster number”
label var v002 “household number”
label var v003 “respondent’s line number”
gen v000=hv000
gen survey_month=hv006
gen survey_year=hv007
********************************************************************************
*Clean data on functional difficulties
********************************************************************************
if hv000 == “KH6” {
forvalues x= 1/6 {
gen sh2`x’_recode=1 if sh2`x’ ==0
replace sh2`x’_recode=2 if sh2`x’ ==1
replace sh2`x’_recode=3 if sh2`x’ ==2
replace sh2`x’_recode=4 if sh2`x’ ==3
*replace sh2`x’_recode=. if sh2`x’ ==.|sh2`x’ ==8
}
*Glasses -n/a
gen hdis1 = .
*Seeing Difficulty
gen hdis2 = sh21_recode
*Hearing Aid – n/a
gen hdis3 = .
*Hearing Difficulty
gen hdis4 = sh22_recode
*Difficulty Communicating
gen hdis5 = sh26_recode
*Difficulty Remembering or Concentrating
gen hdis6 = sh24_recode
*Difficulty Walking or Climbing Steps
gen hdis7 = sh23_recode
*Difficulty Washing All Over or Dressing
gen hdis8 = sh25_recode
*Max difficulty in any one domain
egen hdis9=rowmax(hdis2 hdis4 hdis5 hdis6 hdis7 hdis8)
replace hdis9=. if hdis9==8
replace hdis9=. if hdis2==.|hdis4==.| hdis5==.| hdis6==.| hdis7==.| hdis8 ==.
lab var hdis2 “Difficulty Seeing”
lab var hdis4 “Difficulty Hearing”
lab var hdis5 “Difficulty Communicating”
lab var hdis6 “Difficulty Remembering or Concentrating”
lab var hdis7 “Difficulty Walking or Climbing Steps”
lab var hdis8 “Difficulty Washing All Over or Dressing”
lab var hdis9 “Difficulty Any Domain”
}
if hv000 == “SN7” {
*Glasses
gen hdis1 = sh20ga
*Seeing Difficulty
gen hdis2 = sh20gc if sh20ga==0
replace hdis2 = sh20gb if sh20ga==1
*Hearing Aid
gen hdis3 = sh20gd
*Hearing Difficulty
gen hdis4 = sh20gf if sh20gd==0
replace hdis4 = sh20ge if sh20gd==1
*Difficulty Communicating
gen hdis5 = sh20gg
*Difficulty Remembering or Concentrating
gen hdis6 = sh20gh
*Difficulty Walking or Climbing Steps
gen hdis7 = sh20gi
*Difficulty Washing All Over or Dressing
gen hdis8 = sh20gj
*Max difficulty in any one domain
egen hdis9=rowmax(hdis2 hdis4 hdis5 hdis6 hdis7 hdis8)
replace hdis9=. if hdis9==8
replace hdis9=. if hdis2==.|hdis4==.| hdis5==.| hdis6==.| hdis7==.| hdis8 ==.
lab var hdis2 “Difficulty Seeing”
lab var hdis4 “Difficulty Hearing”
lab var hdis5 “Difficulty Communicating”
lab var hdis6 “Difficulty Remembering or Concentrating”
lab var hdis7 “Difficulty Walking or Climbing Steps”
lab var hdis8 “Difficulty Washing All Over or Dressing”
lab var hdis9 “Difficulty Any Domain”
}
if hv000 == “MV5” {
forvalues x= 4/9 {
gen sh2`x’_recode= sh2`x’
replace sh2`x’_recode=1 if sh2`x’ ==0
}
*Glasses – n/a
gen hdis1 =.
*Seeing Difficulty
gen hdis2 = sh24_recode
*Hearing Aid – n/a
gen hdis3 =.
*Hearing Difficulty
gen hdis4 = sh25_recode
*Difficulty Communicating
gen hdis5 = sh26_recode
*Difficulty Remembering or Concentrating
gen hdis6 = sh27_recode
*Difficulty Walking or Climbing Steps
gen hdis7 = sh28_recode
*Difficulty Washing All Over or Dressing
gen hdis8 = sh29_recode
egen hdis9=rowmax(hdis2 hdis4 hdis5 hdis6 hdis7 hdis8)
replace hdis9=. if hdis9==8
replace hdis9=. if hdis2==.|hdis4==.| hdis5==.| hdis6==.| hdis7==.| hdis8 ==.
lab var hdis2 “Difficulty Seeing”
lab var hdis4 “Difficulty Hearing”
lab var hdis5 “Difficulty Communicating”
lab var hdis6 “Difficulty Remembering or Concentrating”
lab var hdis7 “Difficulty Walking or Climbing Steps”
lab var hdis8 “Difficulty Washing All Over or Dressing”
lab var hdis9 “Difficulty Any Domain”
}
if hv000 == “UG7” {
*Glasses
gen hdis1 = sh23
*Seeing Difficulty
gen hdis2 = sh24 if sh23==1
replace hdis2 = sh25 if sh23==0
*Hearing Aid
gen hdis3 = sh26
*Hearing Difficulty
gen hdis4 = sh27 if sh26==1
replace hdis4 = sh28 if sh26==0
*Difficulty Communicating
gen hdis5 = sh29
*Difficulty Remembering or Concentrating
gen hdis6 = sh30
*Difficulty Walking or Climbing Steps
gen hdis7 = sh31
*Difficulty Washing All Over or Dressing
gen hdis8 = sh32
egen hdis9=rowmax(hdis2 hdis4 hdis5 hdis6 hdis7 hdis8)
replace hdis9=. if hdis9==8
replace hdis9=. if hdis2==.|hdis4==.| hdis5==.| hdis6==.| hdis7==.| hdis8 ==.
lab var hdis2 “Difficulty Seeing”
lab var hdis4 “Difficulty Hearing”
lab var hdis5 “Difficulty Communicating”
lab var hdis6 “Difficulty Remembering or Concentrating”
lab var hdis7 “Difficulty Walking or Climbing Steps”
lab var hdis8 “Difficulty Washing All Over or Dressing”
lab var hdis9 “Difficulty Any Domain”
}
*Disability – Threshold three (DISABILITY3: the level of inclusion is any 1 domain/question is coded A LOT OF DIFFICULTY or CANNOT DO AT ALL)
*NOTE: DISABILITY3 IS THE CUT-OFF RECOMMENDED BY THE WG.
gen WG_Disability_T3=1 if hdis9>2
replace WG_Disability_T3=0 if hdis9<3
replace WG_Disability_T3=. if hdis9==.|hdis9==8
lab var WG_Disability_T3 “Individual meets WG disability T3”
*Any difficulty in any domain indicator
gen any_difficulty = 1 if hdis9>1
replace any_difficulty = 0 if hdis9==1
replace any_difficulty = . if hdis9==.|hdis9==8
*Some difficulty in any domain indicator
gen some_difficulty = 1 if hdis9==2
replace some_difficulty = 0 if hdis9!=2
replace some_difficulty = . if hdis9==.|hdis9==8
*At least a lot of difficulty in any domain indicator
gen atleast_alot_difficulty = 1 if hdis9>=3
replace atleast_alot_difficulty = 0 if hdis9<=2
replace atleast_alot_difficulty = . if hdis9==.|hdis9==8
*No difficulty in any domain indicator
gen no_difficulty=1 if hdis9==1
replace no_difficulty = 0 if hdis9>1
replace no_difficulty = . if hdis9==.|hdis9==8
*Any difficulty for each domain
forvalues x= 2/9 {
gen hdis`x’_any = 1 if hdis`x’>1
replace hdis`x’_any = 0 if hdis`x’==1
replace hdis`x’_any = . if hdis`x’==.| hdis`x’==8
}
lab var hdis2_any “Any Difficulty Seeing”
lab var hdis4_any “Any Difficulty Hearing”
lab var hdis5_any “Any Difficulty Communicating”
lab var hdis6_any “Any Difficulty Remembering or Concentrating”
lab var hdis7_any “Any Difficulty Walking or Climbing Steps”
lab var hdis8_any “Any Difficulty Washing All Over or Dressing”
lab var hdis9_any “Any Difficulty in Any Domain”
*Some difficulty for each domain
forvalues x= 2/9 {
gen hdis`x’_some = 1 if hdis`x’==2
replace hdis`x’_some = 0 if hdis`x’!=2
replace hdis`x’_some = . if hdis`x’==.| hdis`x’==8
}
lab var hdis2_some “Some Difficulty Seeing”
lab var hdis4_some “Some Difficulty Hearing”
lab var hdis5_some “Some Difficulty Communicating”
lab var hdis6_some “Some Difficulty Remembering or Concentrating”
lab var hdis7_some “Some Difficulty Walking or Climbing Steps”
lab var hdis8_some “Some Difficulty Washing All Over or Dressing”
lab var hdis9_some “Some Difficulty Washing in Any Domain”
*At least a lot of difficulty for each domain
forvalues x= 2/9 {
gen hdis`x’_atleast_alot = 1 if hdis`x’>=3
replace hdis`x’_atleast_alot = 0 if hdis`x'<=2
replace hdis`x’_atleast_alot = . if hdis`x’==.| hdis`x’==8
}
lab var hdis2_atleast_alot “Atleast a lot of Difficulty Seeing”
lab var hdis4_atleast_alot “Atleast a lot of Difficulty Hearing”
lab var hdis5_atleast_alot “Atleast a lot of Difficulty Communicating”
lab var hdis6_atleast_alot “Atleast a lot of Difficulty Remembering or Concentrating”
lab var hdis7_atleast_alot “Atleast a lot of Difficulty Walking or Climbing Steps”
lab var hdis8_atleast_alot “Atleast a lot of Difficulty Washing All Over or Dressing”
lab var hdis9_atleast_alot “Atleast a lot of Difficulty in Any Domain”
*No difficulty for each domain
forvalues x= 2/9 {
gen hdis`x’_none = 1 if hdis`x’==1
replace hdis`x’_none = 0 if hdis`x’>1
replace hdis`x’_none = . if hdis`x’==.| hdis`x’==8
}
lab var hdis2_none “No Difficulty Seeing”
lab var hdis4_none “No Difficulty Hearing”
lab var hdis5_none “No Difficulty Communicating”
lab var hdis6_none “No Difficulty Remembering or Concentrating”
lab var hdis7_none “No Difficulty Walking or Climbing Steps”
lab var hdis8_none “No Difficulty Washing All Over or Dressing”
lab var hdis9_none “No Difficulty in Any Domain”
replace hdis9=. if hdis9==8
*Household level Disability Threshold 3
egen HH_Disability_max=max(hdis9), by(hhid)
lab var HH_Disability_max “Max Difficulty in HH”
gen hh_disability_any=1 if HH_Disability_max>1
replace hh_disability_any=0 if HH_Disability_max==1
replace hh_disability_any=. if HH_Disability_max==.
lab var hh_disability_any “P3 Any difficulty in Any Domain for any adult in the hh”
gen hh_disability_some=1 if HH_Disability_max==2
replace hh_disability_some=0 if HH_Disability_max!=2
replace hh_disability_some=. if HH_Disability_max==.
lab var hh_disability_some “P3 Some difficulty in Any Domain for any adult in the hh”
gen hh_disability_atleast_hh=1 if HH_Disability_max>2
replace hh_disability_atleast_hh=0 if HH_Disability_max<3
replace hh_disability_atleast_hh=. if HH_Disability_max==.
lab var hh_disability_atleast_hh “P3 At least a lot of difficulty in Any Domain for any adult in the hh”
if hv000!=”PK7″ {
gen shv005=.
}
*hml16 hv243e sh121k hv104 hv105 hv025
keep shv005 sample_strata hv021 hv000 hv001 idxh4 hv006 hv016 hv007 hvidx v000 v001 v002 v003 v000 hv005 hv024 hv121 hv218 region_name hdis1 hdis2 hdis3 hdis4 hdis5 hdis6 hdis7 hdis8 hdis9 WG_Disability_T3 HH_Disability_max hh_disability_any hh_disability_some hh_disability_atleast_hh hv206 hv207 hv208 hv221 hv243a hdis2_any hdis4_any hdis5_any hdis6_any hdis7_any hdis8_any hdis9_any hdis2_some hdis4_some hdis5_some hdis6_some hdis7_some hdis8_some hdis9_some hdis2_atleast_alot hdis4_atleast_alot hdis5_atleast_alot hdis6_atleast_alot hdis7_atleast_alot hdis8_atleast_alot hdis9_atleast_alot country_name region_name female sex_new age age_group_label age_group urban_new everattended_new edattain_new ind_less_primary ind_primary ind_atleastsecondary marital_status relationship_to_head hoh_gender hoh_age educ_yrs higehst_educ_yr
gen survey =”DHS”
replace hdis2 =. if hdis2==8|hdis2==9
forvalues x = 4/9 {
replace hdis`x’=. if hdis`x’==8|hdis`x’==9
}
********************************************************************************
rename hdis1 wears_glasses
rename hdis3 wears_hearingaid
rename hdis2_any seeing_any
rename hdis4_any hearing_any
rename hdis5_any communicating_any
rename hdis6_any cognition_any
rename hdis7_any mobile_any
rename hdis8_any selfcare_any
rename hdis9_any disability_any
rename hdis2_some seeing_some
rename hdis4_some hearing_some
rename hdis5_some communicating_some
rename hdis6_some cognition_some
rename hdis7_some mobile_some
rename hdis8_some selfcare_some
rename hdis9_some disability_some
rename hdis2_atleast seeing_atleast
rename hdis4_atleast hearing_atleast
rename hdis5_atleast communicating_atleast
rename hdis6_atleast cognition_atleast
rename hdis7_atleast mobile_atleast
rename hdis8_atleast selfcare_atleast
rename hdis9_atleast disability_atleast
lab var seeing_any “P2 Any Difficulty Seeing binary”
lab var hearing_any “P2 Any Difficulty Hearing binary”
lab var communicating_any “P2 Any Difficulty Communicating binary”
lab var cognition_any “P2 Any Difficulty Remembering or Concentrating binary”
lab var mobile_any “P2 Any Difficulty Walking or Climbing Stepss binary”
lab var selfcare_any “P2 Any Difficulty Washing All Over or Dressing binary”
lab var disability_any “P1 Any Difficulty in Any Domain binary”
lab var seeing_some “Some Difficulty Seeing binary”
lab var hearing_some “Some Difficulty Hearing binary”
lab var communicating_some “Some Difficulty Communicating binary”
lab var cognition_some “Some Difficulty Remembering or Concentrating binary”
lab var mobile_some “Some Difficulty Walking or Climbing Stepss binary”
lab var selfcare_some “Some Difficulty Washing All Over or Dressing binary”
lab var disability_some “P1 Some Difficulty Washing in Any Domain binary”
lab var seeing_atleast “Atleast a lot of Difficulty Seeing binary”
lab var hearing_atleast “Atleast a lot of Difficulty Hearing binary”
lab var communicating_atleast “Atleast a lot of Difficulty Communicating binary”
lab var cognition_atleast “Atleast a lot of Difficulty Remembering or Concentrating binary”
lab var mobile_atleast “Atleast a lot of Difficulty Walking or Climbing Steps binary”
lab var selfcare_atleast “Atleast a lot of Difficulty Washing All Over or Dressing binary”
lab var disability_atleast “P1 Atleast a lot of Difficulty in Any Domain binary”
rename hdis2 seeing_diff_new
rename hdis4 hearing_diff_new
rename hdis5 communicating_diff_new
rename hdis6 cognition_diff_new
rename hdis7 mobile_diff_new
rename hdis8 selfcare_diff_new
rename hdis9 func_difficulty
*Create sample weight
gen hh_weight=hv005/1000000
replace hh_weight=shv005/1000000 if hv000==”PK7″&(hv024==5|hv024==7)
lab var hh_weight “household member weight”
save “${clean_data}//`country’_${`country’_SR}_Household_Member_Updated.dta”, replace
}